Convertible Bonds & Swing Contracts as Dynkin Games: A Monte Carlo Approach

René Carmona*

*Bendheim Center for Finance
Department of Operations Research & Financial Engineering
Princeton University

Stanford April 20, 2007
Contents

1. Convertible Bonds
2. Dynkin Games
3. Monte Carlo Implementations
4. Swing Contracts
Why Convertible Bonds

- **Hybrid** derivative:
 - **equity component**: stock shares
 - **fixed income component**: interest coupon payments

- **Upside** in case stock price goes up
- **Little or No Down Side**: bond protection
- **Was** extremely popular and very actively traded
 - Set back in May 2005 (GM/Ford)
- **Volume** recently up again
Typical Corporate Bond Scenario

In general **Seller**
- **Collects nominal** (loan amount) at inception
- **Pays coupons** (interest) at regular time intervals
- **Returns nominal** at maturity

In general **Bond Holder**
- **Pays nominal** (loan amount) upfront
- **Receives coupons** (interest) at regular time intervals
- **Retrieves nominal** at maturity

In case of **Default**
- Bond holder gets **recovery** (proportion of nominal) at time of **default** (before maturity)
Typical Corporate Bond Scenario

In general **Seller**
- **Collects nominal** (loan amount) at inception
- **Pays coupons** (interest) at regular time intervals
- **Returns nominal** at maturity

In general **Bond Holder**
- **Pays nominal** (loan amount) upfront
- **Receives coupons** (interest) at regular time intervals
- **Retrieves nominal** at maturity

In case of **Default**
- Bond holder gets **recovery** (proportion of nominal) at time of **default** (before maturity)
Extra Features of Convertible Bonds

Seller can at a time of his choosing (stopping time)
- Return the nominal (loan amount)
- Stop paying (interest) coupons

Bond Holder can at a time of his choosing (stopping time)
- Request nominal and walk away (game over)
- Convert loan title into company shares

The contract ends the first time one of the two counterparties exercises his/her right
Extra Features of Convertible Bonds

Seller can at a time of his *choosing* *(stopping time)*
- **Return** the nominal (loan amount)
- **Stop paying** (interest) coupons

Bond Holder can at a time of his *choosing* *(stopping time)*
- **Request** nominal and walk away (game over)
- **Convert** loan title into company **shares**

The contract *ends the first time* one of the two counterparties exercises his/her right.
Extra Features of Convertible Bonds

Seller can at a time of his *choosing* (*stopping time*)
- **Return** the nominal (loan amount)
- **Stop paying** (interest) coupons

Bond Holder can at a time of his *choosing* (*stopping time*)
- **Request** nominal and walk away (game over)
- **Convert** loan title into company **shares**

The contract **ends the first time** one of the two counterparties exercises his/her right
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -

Carmona
Converts
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate **defaultable** Bond
- **Option to exchange** for a given number of shares
- **Complex Indentures**
 - **Put / Redemption** provision
 - **Call** provision
 - **Put / Redemption** protection
 - **Call** protection
 - **Call** notice
 - Treatment at **Maturity**
 - Recovery in case of **default**
 - Definition of **default**
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
Convertible Bonds

- Corporate (defaultable) Bond
- Option to exchange for a given number of shares
- Complex Indentures
 - Put / Redemption provision
 - Call provision
 - Put / Redemption protection
 - Call protection
 - Call notice
 - Treatment at Maturity
 - Recovery in case of default
 - Definition of default
 -
Typical Evolution

- **Bond holder** chooses a strategy τ_b (stopping time)
- **Bond seller** chooses a strategy τ_s (stopping time)

$$ R(\tau_b, \tau_s) = \begin{cases}
L_{\tau_b}, & \text{whenever } \tau_b \leq \tau_s \text{ or } \tau_b = \tau_s < N \\
\xi, & \text{whenever } \tau_b = \tau_s = N \\
U_{\tau_s}, & \text{whenever } \tau_b > \tau_s
\end{cases} $$

R present value of payments to bond holder B from seller S

- L is B **converts first**
- U if S **calls** the bond **first**
- ξ if neither party exercises the option before maturity
Mathematical Problem

- Bond holder B tries to maximize $\mathbb{E}\{R(\tau_b, \tau_s)\}$
- Issuer S tries to minimize $\mathbb{E}\{R(\tau_b, \tau_s)\}$

What is the value of such a contract?
Current Pricing not Satisfactory

- Traditional **Models** based on *restrictive* assumptions
 - Traditional (split straight bond / option) only an approximation
 - Asset based ("structural approach") require precise asset/liability information

- **Current Implementations** based on **tree** models & **PDE** solvers
 - do not match market prices
 - do not match market deltas
 -

Room for experimentation with new ideas & new pricing algorithms
Convert Trader’s Wish List

- One program for **quick pricing** (with prices in line with those from third party providers)
- One **robust model implementation** including more of the bond indentures and with implementations for Risk Management, market makers and possibly proprietary traders (quite likely slower than first program)
Convert Trader’s Wish List

- One program for **quick pricing** (with prices in line with those from third party providers)
- One **robust model implementation** including more of the bond indentures and with implementations for Risk Management, market makers and possibly proprietary traders (quite likely **slower** than first program)
Monte Carlo Approach

Need to generate **Monte Carlo Scenarios**

- Need a model for **Equity Dynamics** (though not a Merton like "Structural Approach")
 - Started with a Geometric Brownian Motion
 - MC allows any SDE for dynamics (including stochastic volatility, local volatility, models)
 - Use **exact simulation** or Euler or higher order scheme to generate Monte Carlo scenarios

- Need a model for **Default Intensity** (Cox process in the spirit of "Reduced Form Approach")
 - Need to be able to generate scenarios for the intensity
 - Compute the running integral
 - Draw (independently) an exponential random variable
 - Scenario for the time of default given by first time intensity running integral crosses above the exponential variate.
Monte Carlo Approach

Need to generate **Monte Carlo Scenarios**

- Need a model for **Equity Dynamics** (though not a Merton like "Structural Approach")
 - Started with a Geometric Brownian Motion
 - MC allows any SDE for dynamics (including stochastic volatility, local volatility, models)
 - Use **exact simulation** or Euler or higher order scheme to generate Monte Carlo scenarios

- Need a model for **Default Intensity** (Cox process in the spirit of "Reduced Form Approach")
 - Need to be able to generate scenarios for the intensity
 - Compute the running integral
 - Draw (independently) an exponential random variable
 - Scenario for the time of default given by first time intensity running integral crosses above the exponential variate.
Done via the construction of **two random sequences**

- \(\{L_j\}_j \) gives the present value (PV) at time \(t = 0 \) of the **cumulative** cash flows to the holder, before-and-including time \(t = j\Delta t \), should she decide to exercise her right(s) (**conversion, redemption/put, ...**) at time \(j\Delta t \), while issuer has not exercised any of her options yet.

- \(\{U_j\}_j \) gives PV of the **cumulative** cash flows to the holder from the issuer before and including time \(t = j\Delta t \) should the issuer decide to exercise her right(s) to **call** the bond at time \(j\Delta t \) while holder has not exercised any of her options yet.
Done via the construction of **two random sequences**

- \(\{L_j\}_j \) gives the present value (PV) at time \(t = 0 \) of the **cumulative** cash flows to the holder, before-and-including time \(t = j\Delta t \), should she decide to exercise her right(s) (**conversion, redemption/put, ...**) at time \(j\Delta t \), while issuer has not exercised any of her options yet.

- \(\{U_j\}_j \) gives PV of the **cumulative** cash flows to the holder from the issuer before and including time \(t = j\Delta t \) should the issuer decide to exercise her right(s) to **call** the bond at time \(j\Delta t \) while holder has not exercised any of her options yet.
Typical MC Scenario for \(\{L_j\}_j \)

- **Before default** (i.e. \(j\Delta t < \tau \))
 - \(L_j = AI + PV \) of coupon payments up to time \(j\Delta t \) if \(j\Delta t < T_{\text{conv}} \)
 - conversion protection threshold
 - \(L_j = AI + PVCP[j] + \text{ConvRat} \times S[j\Delta t] \)
 - if \(j\Delta t > T_{\text{conv}} \) (no redemption possible)
 - \(L_j = AI + PVCP[j] + \max\{\text{ConvRat} \times S[j\Delta t], P\} \)
 - if \(j\Delta t > T_{\text{conv}} \) and put possible

- **After default** (i.e. \(j\Delta t \geq \tau \))
 - \(L_j = AI + PVCP[\tau] \) + present value of recovery
Typical MC Scenario for \(\{L_j\}_j \)

- **Before default** (i.e. \(j\Delta t < \tau \))
 - \(L_j = AI + PV \) of coupon payments up to time \(j\Delta t \)
 - if \(j\Delta t < T_{conv} \) conversion protection threshold
 - \(L_j = AI + PVCP[j] + ConvRat \cdot S[j\Delta t] \)
 - if \(j\Delta t > T_{conv} \) (no redemption possible)
 - \(L_j = AI + PVCP[j] + \max\{ConvRat \cdot S[j\Delta t], P\} \)
 - if \(j\Delta t > T_{conv} \) and put possible

- **After default** (i.e. \(j\Delta t \geq \tau \))
 - \(L_j = AI + PVCP[\tau] + \text{present value of recovery} \)
Typical MC Scenario for $\{L_j\}_j$

- **Before default** (i.e. $j\Delta t < \tau$)
 - $L_j = AI + PV$ of coupon payments up to time $j\Delta t$
 - if $j\Delta t < T_{conv}$ conversion protection threshold
 - $L_j = AI + PVCP[j] + ConvRat \times S[j\Delta t]$
 - if $j\Delta t > T_{conv}$ (no redemption possible)
 - $L_j = AI + PVCP[j] + \max\{ConvRat \times S[j\Delta t], P\}$
 - if $j\Delta t > T_{conv}$ and put possible

- **After default** (i.e. $j\Delta t \geq \tau$)
 - $L_j = AI + PVCP[\tau]$ + present value of recovery
Typical MC Scenario for \(\{L_j\}_j \)

Before default (i.e. \(j\Delta t < \tau \))
- \(L_j = AI + PV \) of coupon payments up to time \(j\Delta t \)
 - if \(j\Delta t < T_{conv} \) conversion protection threshold
- \(L_j = AI + PVCP[j] + \text{ConvRat} \times S[j\Delta t] \)
 - if \(j\Delta t > T_{conv} \) (no redemption possible)
- \(L_j = AI + PVCP[j] + \max\{\text{ConvRat} \times S[j\Delta t], P\} \)
 - if \(j\Delta t > T_{conv} \) and put possible

After default (i.e. \(j\Delta t \geq \tau \))
- \(L_j = AI + PVCP[\tau] + \) present value of recovery
Typical MC Scenario for $\{U_j\}_j$

- **Before default** (i.e. $j\Delta t < \tau$)
 - $U_j \equiv \infty$ up to the time T_{call} of hard call protection
 - $U_j = AI + PVCP[j] + \max\{\text{ConvRat} \ast S[j\Delta t], P_{\text{call}}\}$ if $j\Delta t > T_{\text{call}}$ (call possible)
 - Include Make Whole provisions
 - Implement Soft Call Protection
 - Include Call Notice of Redemption Period provisions
 - ·

- **After default** (i.e. $j\Delta t \geq \tau$)
 - $U_j = AI + PVCP[\tau] + \text{present value of recovery}$

Notice

$$L_j \leq U_j \quad \text{and} \quad L_N = U_N = \xi.$$
Typical MC Scenario for $\{U_j\}_j$

Before default (i.e. $j\Delta t < \tau$)
- $U_j \equiv \infty$ up to the time T_{call} of **hard call protection**
- $U_j = AI + PVCP[j] + \max\{\text{ConvRat} \times S[j\Delta t], P_{\text{call}}\}$
- If $j\Delta t > T_{\text{call}}$ (**call** possible)
- Include **Make Whole** provisions
- Implement **Soft Call Protection**
- Include **Call Notice of Redemption Period** provisions

After default (i.e. $j\Delta t \geq \tau$)
- $U_j = AI + PVCP[\tau] + \text{present value of recovery}$

Notice

$L_j \leq U_j$ and $L_N = U_N = \xi$.
Typical MC Scenario for \(\{U_j\}_j \)

- **Before default** (i.e. \(j\Delta t < \tau \))
 - \(U_j \equiv \infty \) up to the time \(T_{\text{call}} \) of hard call protection
 - \(U_j = AI + PVCP[j] + \max\{\text{ConvRat} \ast S[j\Delta t], P_{\text{call}}\} \)
 - if \(j\Delta t > T_{\text{call}} \) (call possible)
 - Include **Make Whole** provisions
 - Implement **Soft Call Protection**
 - Include **Call Notice of Redemption Period** provisions
 -

- **After default** (i.e. \(j\Delta t \geq \tau \))
 - \(U_j = AI + PVCP[\tau] + \text{present value of recovery} \)

Notice

\[
L_j \leq U_j \quad \text{and} \quad L_N = U_N = \xi.
\]
Typical MC Scenario for $\{U_j\}_j$

Before default (i.e. $j\Delta t < \tau$)
- $U_j \equiv \infty$ up to the time T_{call} of **hard call protection**
- $U_j = AI + PVCP[j] + \max\{ConvRat \ast S[j\Delta t], P_{call}\}$ if $j\Delta t > T_{call}$ (**call possible**)
- Include **Make Whole** provisions
- Implement **Soft Call Protection**
- Include **Call Notice of Redemption Period** provisions

After default (i.e. $j\Delta t \geq \tau$)
- $U_j = AI + PVCP[\tau] +$ present value of recovery

Notice

$$L_j \leq U_j \quad \text{and} \quad L_N = U_N = \xi.$$
Typical MC Scenario for \(\{U_j\}_j \)

Before default (i.e. \(j\Delta t < \tau \))

- \(U_j \equiv \infty \) up to the time \(T_{call} \) of *hard call protection*
- \(U_j = AI + PVCP[j] + \max\{ConvRat \ast S[j\Delta t], P_{call}\} \)

 if \(j\Delta t > T_{call} \) (*call* possible)
- Include **Make Whole** provisions
- Implement **Soft Call Protection**
- Include **Call Notice of Redemption Period** provisions
- ·

After default (i.e. \(j\Delta t \geq \tau \))

- \(U_j = AI + PVCP[\tau] + \text{present value of recovery} \)

Notice

\[
L_j \leq U_j \quad \text{and} \quad L_N = U_N = \xi.
\]
Typical MC Scenario for $\{U_j\}_j$

Before default (i.e. $j\Delta t < \tau$)
- $U_j \equiv \infty$ up to the time T_{call} of hard call protection
- $U_j = AI + PVCP[j] + \max\{\text{ConvRat} \ast S[j\Delta t], P_{\text{call}}\}$ if $j\Delta t > T_{\text{call}}$ (call possible)
- Include **Make Whole** provisions
- Implement **Soft Call Protection**
- Include **Call Notice of Redemption Period** provisions
- · · · · · · · · · · · · · · · ·

After default (i.e. $j\Delta t \geq \tau$)
- $U_j = AI + PVCP[\tau] +$ present value of recovery

Notice

$L_j \leq U_j$ and $L_N = U_N = \xi$.
Typical MC Scenario for \{U_j\}_j

Before default (i.e. \(j\Delta t < \tau\))
- \(U_j \equiv \infty\) up to the time \(T_{\text{call}}\) of **hard call protection**
- \(U_j = AI + PVCP[j] + \max\{\text{ConvRat} \times S[j\Delta t], P_{\text{call}}\}\)
 - if \(j\Delta t > T_{\text{call}}\) (**call** possible)
- Include **Make Whole** provisions
- Implement **Soft Call Protection**
- Include **Call Notice of Redemption Period** provisions
- · · · · · · · · · · · · · · · · ·

After default (i.e. \(j\Delta t \geq \tau\))
- \(U_j = AI + PVCP[\tau] + \text{present value of recovery}\)

Notice

\[L_j \leq U_j \quad \text{and} \quad L_N = U_N = \xi.\]
Bond holder chooses a strategy τ_b (stopping time)
Bond seller chooses a strategy τ_s (stopping time)

$$R(\tau_b, \tau_s) = \begin{cases}
 L_{\tau_b}, & \text{whenever } \tau_b \leq \tau_s \text{ or } \tau_b = \tau_s < N \\
 \xi, & \text{whenever } \tau_b = \tau_s = N \\
 U_{\tau_s}, & \text{whenever } \tau_b > \tau_s
\end{cases}$$

In words: \textit{PV of payments to bond holder B from seller S}

- L is B converts (strictly) before maturity and no later than S calls the bond
- U if S calls the bond first
- ξ if neither party exercises her option before maturity
Dynkin Games of Timing

- Bond holder B tries to maximize $\mathbb{E}\{R(\tau_b, \tau_s)\}$
- Issuer S tries to minimize $\mathbb{E}\{R(\tau_b, \tau_s)\}$

Framed this way,

Convertible Bond Set Up = Dynkin Game (of Timing) Set Up
Game Value Functions

Game upper value

\[\overline{V} = \sup_{\tau_b} \inf_{\tau_s} \mathbb{E}\{ R(\tau_b, \tau_s) \} \]

Game lower value

\[\underline{V} = \inf_{\tau_s} \sup_{\tau_b} \mathbb{E}\{ R(\tau_b, \tau_s) \} \]

Interpretation

- For any seller’s call strategy \(\tau_s \), holder chooses \(\tau_b \) which maximizes her expected reward
 \[\sup_{\tau_b} \mathbb{E}\{ R(\tau_b, \tau_s) \} \] \((*)\)
 if seller is prudent, she chooses \(\tau_s \) to minimize \((*)\), hence the lower bound \(\underline{V} \).
- This \textit{min-max} strategy guarantees that expected payment to the bond holder is at least \(\underline{V} \).
- Exchange roles of issuer and holder to get a \textit{max-min} strategy for which, whatever convert strategy the holder uses, the expected payment to the holder cannot exceed \(\overline{V} \).
For each \(n \) define random variables \(V_n \) and \(\overline{V}_n \) by

\[
V_n = \inf_{\tau_b \in S_n} \sup_{\tau_s \in S_n} \mathbb{E}_n\{R(\tau_b, \tau_s)\}
\]

and

\[
\overline{V}_n = \sup_{\tau_s \in S_n} \inf_{\tau_b \in S_n} \mathbb{E}_n\{R(\tau_b, \tau_s)\}
\]

- \(S_n \) set of \(\{\mathcal{F}_n\}_n \)-stopping times \(\tau \), \(n \leq \tau \leq N \)
- \(\mathbb{E}_n \) conditional expectation w.r.t. \(\mathcal{F}_n \), i.e. \(\mathbb{E}_n\{ \cdot \} = \mathbb{E}\{ \cdot | \mathcal{F}_n \} \).
Main Results of the Theory

\[V_n = \overline{V}_n, \quad 0 \leq n \leq N \]

Dynamic programming principle (backward induction)

\[V_n = \begin{cases}
L_n, & \text{if } \mathbb{E}_n\{V_{n+1}\} < L_n \\
\mathbb{E}_n\{V_{n+1}\}, & \text{if } L_n \leq \mathbb{E}_n\{V_{n+1}\} \leq U_n \\
U_n, & \text{if } U_n < \mathbb{E}_n\{V_{n+1}\}
\end{cases} \]

starting from the terminal condition \(V_N = \xi \).

Minimal optimal stopping times

\[\tau_b^* = \inf\{n \geq 0; \ V_n \leq L_n\} \]

and

\[\tau_s^* = \inf\{n \geq 0; \ V_n \geq U_n\} . \]
Main Results of the Theory

\[V_n = \overline{V}_n, \quad 0 \leq n \leq N \]

Dynamic programming principle (backward induction)

\[V_n = \begin{cases}
L_n, & \text{if } \mathbb{E}_n\{V_{n+1}\} < L_n \\
\mathbb{E}_n\{V_{n+1}\}, & \text{if } L_n \leq \mathbb{E}_n\{V_{n+1}\} \leq U_n \\
U_n, & \text{if } U_n < \mathbb{E}_n\{V_{n+1}\}
\end{cases} \]

starting from the terminal condition \(V_N = \xi \).

Minimal optimal stopping times

\(\tau_b^* = \inf\{n \geq 0; \ V_n \leq L_n\} \)

and

\(\tau_s^* = \inf\{n \geq 0; \ V_n \geq U_n\} \).
Main Results of the Theory

\[V_n = \overline{V}_n, \quad 0 \leq n \leq N \]

Dynamic programming principle (backward induction)

\[V_n = \begin{cases}
L_n, & \text{if } \mathbb{E}_n\{V_{n+1}\} < L_n \\
\mathbb{E}_n\{V_{n+1}\}, & \text{if } L_n \leq \mathbb{E}_n\{V_{n+1}\} \leq U_n \\
U_n, & \text{if } U_n < \mathbb{E}_n\{V_{n+1}\}
\end{cases} \]

starting from the terminal condition \(V_N = \xi \).

Minimal optimal stopping times

\[\tau^*_b = \inf\{n \geq 0; \ V_n \leq L_n\} \]

and

\[\tau^*_s = \inf\{n \geq 0; \ V_n \geq U_n\}. \]
Conclusion: we have a Pricing Algorithm

Like in the case of American options

- Choose your favorite regression method
- Compute value functions V_n backward-in-time starting from time $n = N$ down to $n = 0$.
- Read off the convertible bond price as the value function at time $n = 0$
- Compute the optimal exercise times scenario-by-scenario in a forward-in-time pass through the scenario
Conclusion: we have a Pricing Algorithm

Like in the case of **American options**

- Choose your favorite regression method
- Compute value functions V_n **backward-in-time** starting from time $n = N$ down to $n = 0$.
- Read off the **convertible bond price** as the value function at time $n = 0$
- Compute the **optimal exercise times** scenario-by-scenario in a **forward-in-time** pass through the scenario
Conclusion: we have a Pricing Algorithm

Like in the case of **American options**

- Choose your favorite regression method
- Compute value functions V_n *backward-in-time* starting from time $n = N$ down to $n = 0$.
- Read off the **convertible bond price** as the value function at time $n = 0$
- Compute the **optimal exercise times** scenario-by-scenario in a *forward-in-time* pass through the scenario
Conclusion: we have a Pricing Algorithm

Like in the case of American options

- Choose your favorite regression method
- Compute value functions V_n \textit{backward-in-time} starting from time $n = N$ down to $n = 0$.
- Read off the convertible bond price as the value function at time $n = 0$
- Compute the \textit{optimal exercise times} scenario-by-scenario in a \textit{forward-in-time} pass through the scenario
Choice of a Model with Equity dependent Spreads

Choose **default intensity** function of the **underlying spot**

- \(\lambda_t = \lambda(S_t) \)

- \(\lambda(x) = \beta_0 x^{-\beta_1} \)
 - (Andersen-Buffum, Ayache-Forsyth-Vetzal, Davis-Lischka, Duffie-Singleton, Muromachi, Takahashi-Kobayashi-Nakagawa, Linetsky, · · ·)

- \(\lambda(x) = \beta_0 e^{-\beta_1 x} \)
 - (Bloch-Miralles, Arvanitis-Gregory, · · ·)

In any case:

ONE FACTOR MODEL
Choice of a Model with Equity dependent Spreads

Choose **default intensity** function of the **underlying spot**

$$\lambda_t = \lambda(S_t)$$

- $$\lambda(x) = \beta_0 x^{-\beta_1}$$
 - (Andersen-Buffum, Ayache-Forsyth-Vetzal, Davis-Lischka, Duffie-Singleton, Muromachi, Takahashi-Kobayashi-Nakagawa, Linetsky, · · ·)

- $$\lambda(x) = \beta_0 e^{-\beta_1 x}$$
 - (Bloch-Miralles, Arvanitis-Gregory, · · ·)

In any case:

ONE FACTOR MODEL
Choose **default intensity** function of the **underlying spot**

- \(\lambda_t = \lambda (S_t) \)

- \(\lambda (x) = \beta_0 x^{-\beta_1} \)

 (Andersen-Buffum, Ayache-Forsyth-Vetzal, Davis-Lischka, Duffie-Singleton, Muromachi, Takahashi-Kobayashi-Nakagawa, Linetsky, · · ·)

- \(\lambda (x) = \beta_0 e^{-\beta_1 x} \)

 (Bloch-Miralles, Arvanitis-Gregory, · · ·)

In any case:

ONE FACTOR MODEL
Calibration

Local volatility function $\sigma(t, S_t)$ function of the underlying spot
- grab equity option prices
- construct a local volatility surface
- replace constant σ of GBM by $\sigma(t, S_t)$ in Euler or Milstein or ...

NOT DONE

Intensity parameters β_0, β_1 to match market CDS spread curve
- Use a Levenberg-Marquardt form of least squares calibration
- Use MC to compute CDS spreads from model

Works OK but not robust
Local volatility function \(\sigma(t, S_t) \) function of the underlying spot

- grab equity option prices
- construct a local volatility surface
- replace constant \(\sigma \) of GBM by \(\sigma(t, S_t) \) in Euler or Milstein or ...

NOT DONE

Intensity parameters \(\beta_0, \beta_1 \) to match market CDS spread curve

- Use a Levenberg-Marquardt form of least squares calibration
- Use MC to compute CDS spreads from model

Works OK but not robust
Regression

\mathcal{F}_n contains information about $S_k \textbf{ AND }$ events $\{\tau \leq k\}$ for $k \leq n$

Add a jump to 0 at default: set $S_t = 0$ when $t \geq \tau$
(i.e. add a jump martingale term to SDE for S_t)

$$\tilde{S}_n = \begin{cases} S_n, & \text{if } n < \tau \\ 0, & \text{if } n \geq \tau \end{cases}$$

In the backward induction

Regress V_{n+1} against \tilde{S}_n instead of \mathcal{F}_n!
\[\mathcal{F}_n \] contains information about \(S_k \) AND events \(\{ \tau \leq k \} \) for \(k \leq n \)

Add a jump to 0 at default: set \(S_t = 0 \) when \(t \geq \tau \)
(i.e. add a jump martingale term to SDE for \(S_t \))

\[
\tilde{S}_n = \begin{cases}
S_n, & \text{if } n < \tau \\
0, & \text{if } n \geq \tau
\end{cases}
\]

In the backward induction

Regress \(V_{n+1} \) against \(\tilde{S}_n \) instead of \(\mathcal{F}_n \)!
Regression

F_n contains information about S_k AND events $\{\tau \leq k\}$ for $k \leq n$

Add a jump to 0 at default: set $S_t = 0$ when $t \geq \tau$
(i.e. add a jump martingale term to SDE for S_t)

$$\tilde{S}_n = \begin{cases} S_n, & \text{if } n < \tau \\ 0 & \text{if } n \geq \tau \end{cases}$$

In the backward induction

Regress V_{n+1} against \tilde{S}_n instead of F_n !
Looking at Data

In the \((S_n, V_{n+1})\) - plane

- blob of points above \(S_n = 0\) (default prior to or at \(n\))
- mild "hockey-stick" shape or linear cloud above \(S_n > 0\)

Easy way-out:

- Plain average for \(S_n = 0\)
- Plain Least Squares **Piecewise Linear Regression** of \(V_{n+1}\) against \(S_n\) when \(S_n > 0\)!
Looking at Data

In the \((S_n, V_{n+1})\) - plane
- blob of points above \(S_n = 0\) (default prior to or at \(n\))
- mild "hockey-stick" shape or linear cloud above \(S_n > 0\)

Easy way-out:
- Plain average for \(S_n = 0\)
- Plain Least Squares **Piecewise Linear Regression** of \(V_{n+1}\) against \(S_n\) when \(S_n > 0\)!
Looking at Data: Sirius

Sirius, 3.5%, June 1, 2008, J=J_{max}=324
Looking at Data: Sirius

Sirius, 3.5%, June 1, 2008, J=50
Looking at Data: Bearingpoint

Bearingpoint, 3.5%, 12/15/2024, J=J_{\text{max}}=3319
Looking at Data: Bearingpoint

Bearingpoint, 3.5%, 12/15/2024, J=500
Looking at Data: Bearingpoint

Bearingpoint, 3.5%, 12/15/2024, J=5
Looking at Data: Schlumberger
C++ Pricing Code

- Simple Convertible Bond class
- MC Calibration member functions
- Home-grown regression class
- MC Pricing member function (implementing backward induction)
Prices and Model Deltas

Sirius 3.5% 6/1/2008 on 8/9/06, S0=$3.88, conv=72.46
Prices and Model Rhos

Sirius 3.5% 6/1/2008 on 8/9/06, S0=$3.88, conv=72.46

Rho = 0.0691
Prices and Model Vegas

Sirius 3.5% 6/1/2008 on 8/9/06, S0=$3.88, conv=72.46

Vega = 0.125
(Kynex) 0.0993
If recall takes place at time $t = j \Delta t$, holder has $\delta \Delta t$ to convert. So replace U_j by

$$\sup_{j \leq \tau \leq j + \tau} \mathbb{E}\{U_\tau\}$$

i.e. replace the upper reward $\{U_j\}_j$ by the value of an American like option

- Implementation: **Straightforward**
- Computing time: **Prohibitive**
- Easy upper bound by martingale methods (duality)
Convertible Bonds

Proposed Monte Carlo Approach

Dynkin Games

What Has Been Done

Duality/Pointwise Approach

American Options

\[
\sup_{\tau} \mathbb{E}\{X_\tau\} = \inf_{M=\{M_j\}_j} \mathbb{E}\{\sup_j [X_j - M_j]\}
\]

- Davis-Karatzsas
- Haug-Kogan
- Andersen-Broadie, Rogers

Dynkin Games / Israeli Options

There exists a martingale \(M = \{M_n\}_n \) s.t.

\[
V_0 = \sup_i \inf_j [R(i, j) - M^*_i \wedge j] = \inf_j \sup_i [R(i, j) - M^*_i \wedge j] \quad \text{a.s.}
\]

- Kühn - Kyprianou - Schaik
American Options

\[
\sup_{\tau} \mathbb{E}\{X_\tau\} = \inf_{M=\{M_j\}} \mathbb{E}\{\sup_j [X_j - M_j]\}
\]

- Davis-Karatzas
- Haug-Kogan
- Andersen-Broadie, Rogers

Dynkin Games / Israeli Options

There exists a martingale \(M = \{M_n\} \) s.t.

\[
V_0 = \sup_i \inf_j [R(i, j) - M_{i\wedge j}^*] = \inf_j \sup_i [R(i, j) - M_{i\wedge j}^*] \quad \text{a.s.}
\]

- Kühn - Kyprianou - Schaik
What Remains to be Done

- Developing Importance Sampling methods for Variance Reduction
- Adding more stochastic factors
 - interest rate (long dated bonds with borrow fees)
 - stochastic volatility (e.g. Heston model)
 - other underliers (stocks, indexes, baskets) for exchange conversions.

 EASY, only problem: Regression becomes multivariate !!!

- Identification of the optimal conversion time as the first crossing time of an Exercise Boundary (support of $S(\tau)$)
- Identification of the optimal call time and statistical analysis of the CALL LAG
- Exogeneous modelling of tax effects and Fundamental Changes
- Developing and Implementing Pathwise approach
What Remains to be Done

- Developing Importance Sampling methods for **Variance Reduction**
- Adding more **stochastic factors**
 - interest rate (long dated bonds with *borrow fees*)
 - stochastic volatility (e.g. Heston model)
 - other underliers (stocks, indexes, baskets) for exchange conversions.

 EASY, only problem: Regression becomes **multivariate !!!**

- Identification of the **optimal conversion time** as the first crossing time of an **Exercise Boundary** (support of $S(\tau)$)
- Identification of the **optimal call time** and statistical analysis of the **CALL LAG**
- Exogenous modelling of *tax effects* and **Fundamental Changes**
- Developing and Implementing **Pathwise approach**
What Remains to be Done

- Developing Importance Sampling methods for Variance Reduction
- Adding more stochastic factors
 - interest rate (long dated bonds with borrow fees)
 - stochastic volatility (e.g. Heston model)
 - other underliers (stocks, indexes, baskets) for exchange conversions.

 EASY, only problem: Regression becomes multivariate !!!

- Identification of the optimal conversion time as the first crossing time of an Exercise Boundary (support of \(S(\tau) \))
- Identification of the optimal call time and statistical analysis of the CALL LAG
- Exogeneous modelling of tax effects and Fundamental Changes
- Developing and Implementing Pathwise approach
What Remains to be Done

- Developing Importance Sampling methods for **Variance Reduction**
- Adding more **stochastic factors**
 - interest rate (long dated bonds with *borrow fees*)
 - stochastic volatility (e.g. Heston model)
 - other underliers (stocks, indexes, baskets) for exchange conversions.

 EASY, only problem: Regression becomes **multivariate !!!**

- Identification of the **optimal conversion time** as the first crossing time of an **Exercise Boundary** (support of $S(\tau)$)
- Identification of the **optimal call time** and statistical analysis of the **CALL LAG**
- Exogeneous modelling of **tax effects** and **Fundamental Changes**
- Developing and Implementing **Pathwise approach**
What Remains to be Done

- Developing Importance Sampling methods for Variance Reduction
- Adding more stochastic factors
 - interest rate (long dated bonds with borrow fees)
 - stochastic volatility (e.g. Heston model)
 - other underliers (stocks, indexes, baskets) for exchange conversions.

 EASY, only problem: Regression becomes multivariate !!!

- Identification of the optimal conversion time as the first crossing time of an Exercise Boundary (support of $S(\tau)$)
- Identification of the optimal call time and statistical analysis of the CALL LAG
- Exogeneous modelling of tax effects and Fundamental Changes
- Developing and Implementing Pathwise approach