1 Exercises: multiparameter part II

1.1 Exercise

Suppose we observe independent $X_i \sim \text{Gamma}(1, \alpha_i), 1 \leq i \leq k$ (i.e. scale 1 but shape parameter α_i). Set

1. Set

$$f(x_1, \ldots, x_k) = \left(x_1, \ldots, x_k, \sum_{i=1}^{k} x_i \right).$$

Show that the push-forward of the the original exponential family of distributions on \mathbb{R}^k is an exponential family of distributions on \mathbb{R}^{k+1}. What is the sufficient statistic?

2. What is the dimension of the natural parameter space (i.e. how many parameters are there)?

3. What is the reference measure?

4. Suppose $g(x) = Ax + b$. Give a sufficient condition on (A, b) so that the push forward of an exponential family is still an exponential family. Give an example of (A, b) for which the push forward fails to be an exponential family.

1.2 Exercise

1. Give a general formula for

$$P_{\eta} \left(t_1(X) \in A \mid t_2(X) \right).$$

Show that it is an exponential family.

2. What is its sufficient statistic?

3. What is its reference measure? Be formal about it: what is the sample space? What is the measure?

1.3 Exercise

Finally, for the Ising model we see that the CGF of x_i under this measure is

$$\log \left(e^{Q^1_1 + 2 \sum_{(i,k) \in E} Q^2_{ik} x_k} + e^{-Q^1_1 - 2 \sum_{(i,k) \in E} Q^2_{ik} x_k} \right) + C$$

Let’s write this CGF as $\Lambda \left(Q^1, Q^2 \mid x_{-i} \right)$.

This is the CGF of a $\{1, -1\}$ valued random variable with natural parameter

$$\eta(x_{-i}, Q^1, Q^2) = Q^1_i + 2 \sum_{(i,k) \in E} Q^2_{ik} x_k,$$

and counting measure on $\{-1, 1\}$ as reference measure.

The notation $\eta(x_{-i}, Q^1, Q^2)$ suggests that the natural parameter corresponding to sufficient statistic x_i, when conditioning on x_{-i}, has changed. Does this conflict with what we saw earlier about conditioning?
1.4 Exercise
Write the Ising model above as a Markov random field above. Be specific as possible.

1. What are the f_A’s?
2. What are the η_A’s?
3. What is the reference measure?

1.5 Exercise
1. Write out the pseudolikelihood for the Ising model as explicitly as possible.
2. Is it convex in (Q^1, Q^2)?
3. Describe a Newton-Raphson algorithm to estimate (Q^1, Q^2) based on maximizing the pseudolikelihood. Be as specific as possible, i.e. compute gradients and Hessians as explicitly as possible.

1.6 Exercise
Consider an Ising model on L, the 100×100 lattice in \mathbb{Z}^2 with $Q^1 = \alpha \cdot 111^T, Q^2 = \beta \cdot 111^T$.

1. For $\beta = 0, \alpha = 1$, initialize the Gibbs sampler at some random initial condition. Run the Gibbs sampler Markov chain on $\{-1, 1\}^L$ for some time. What do you expect the binary image to look like?
2. Repeat for $\beta > 0$ and $\beta < 0$.
 Note: I am not asking for an exhaustive simulation, the goal is to just get the basic mechanics of a Gibbs sampler.