Implied Loss Distribution, Term Structure of Correlation Skew and Dynamic Modeling of Credit Portfolio

Quantitative Analytics
Global Credit Derivatives Group
Barclays Capital

David Li
+1 212 412 3551
david.li@barcap.com
Outline

- Current Portfolio Credit Derivative Market
- Copula function approach to credit portfolio modeling
- Extension of Gaussian Copula Functions: Mixture of Copula Function; Gaussian extension
- Implied Loss distribution
- CDO and CDO^2 Pricing using Implied loss distribution
- Dynamic Model of Portfolio Loss distribution
Some of the latest Credit Portfolio Products

- CDO^2 with cross subordination
- CDO of long and short credit or CDO^2 with long and short tranches; CDO of global credits
- Forward CDOs
- CDO with changing subordination levels or amortizing underlying credits
- Tranchelets and non-standard index tranches
- ABX index and tranche: HEL
Market Quotes: CDX, March 01, 2006

<table>
<thead>
<tr>
<th>CDX.5 (12/10) Ref (42) delta</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3% 33 1/4 - 33 5/8</td>
<td>22.0x</td>
</tr>
<tr>
<td>3-7% 91 - 93</td>
<td>5.5x</td>
</tr>
<tr>
<td>7-10% 19 - 21</td>
<td>1.5x</td>
</tr>
<tr>
<td>10-15% 9 - 11.5</td>
<td>0.7x</td>
</tr>
<tr>
<td>15-30% 3 - 5.5</td>
<td>0.3x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDX.5 (12/12) Ref (51) delta</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3% 51 1/8 - 52 5/8</td>
<td>14.5x</td>
</tr>
<tr>
<td>3-7% 221 - 226</td>
<td>9.5x</td>
</tr>
<tr>
<td>7-10% 36 - 38</td>
<td>2.2x</td>
</tr>
<tr>
<td>10-15% 17 - 20</td>
<td>1.1x</td>
</tr>
<tr>
<td>15-30% 5.5 - 6.5</td>
<td>0.4x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CDX.5 (12/15) Ref (64) delta</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3% 58 3/4 - 59 1/4</td>
<td>7.5x</td>
</tr>
<tr>
<td>3-7% 587 - 595</td>
<td>12.0x</td>
</tr>
<tr>
<td>7-10% 97 - 101</td>
<td>4.7x</td>
</tr>
<tr>
<td>10-15% 48 - 51</td>
<td>2.2x</td>
</tr>
<tr>
<td>15-30% 12 - 15</td>
<td>0.6x</td>
</tr>
</tbody>
</table>
Default Correlation: The Joy of Copulas

- We first know the marginal distribution of survival time for each credit.
- We need to construct a joint distribution with given marginals and a correlation structure.
- Copula function used in multivariate statistics can be used.
- The correlation parameters used in copula function can be interpreted as the asset correlation between two credits used in CreditMetrics.
What is a Copula Function?

- Function that join or couple multivariate distribution functions to their one-dimensional marginal distribution functions
- For m uniform r. v., U1, U2,, Um
 \[C(u_1,u_2,\ldots,u_m) = \Pr[U_1 \leq u_1, U_2 \leq u_2, \ldots, U_m \leq u_m] \]
- Suppose we have m marginal distributions with distribution function \(F_i(x_i) \)
- Then the following defines a multivariate distribution function
 \[F(x_1, x_2, \ldots, x_m) = C(F_1(x_1), F_2(x_2), \ldots, F_m(x_m)) \]
How do we simulate the default time in the normal copula function framework?

- Simulate a joint normal distribution Y_i with a given correlation matrix Σ
- Translate Y into a uniform random variable Z
- Use each credit curve to get survival time for each credit

$$T_i = F_i^{-1}(\Phi(Y_i))$$
Efficient Credit Portfolio Simulation

- Importance Sampling
 - For single name we should shift the normal mean from 0 to 0.865
- Quasi Monte Carlo
 - It does not work very well for high dimension; but it would help tremendously if we use it in conjunction with the reduction of dimension
- Reduction of Dimensionalities
 - One correlation – one factor model
 - Inter and intra industry correlation – (n + 1) factor model where n is the number of industry groups
- Fast Fourier Transformation Approach (FFT)
- Recursive Algorithm (conditional convolution) and other Approximation (conditional approximation)
Excess Loss Distribution

(125 names, 55 bps, 40% recovery rate)
Tranche Loss as an Option on the Total Portfolio Loss

Tranche Loss v.s. Total Loss

- Super Senior
- Senior
- Mezzanine
- Mezzanine Subord
- Equity
Base Correlation

- For each CDO tranche loss leg could be deemed as a call spread on the loss distribution, long a call with the strike equal to detachment amount and short a call with a strike equal to the attachment amount.

- Implied correlation should be quoted against only equity tranches with different detachment points. This would give a consistent framework.

- The hedge ratio would be different in two cases: using base correlation and not using base correlation.
Base Correlation and Index Level
Various Extension of Basic Gaussian Copula Model

Problem: How to price bespoke portfolio?
Various mapping approaches, and various Gaussian extensions

- Student, Marshal-Olkin, Negative Inverse Gaussian
- Gaussian Extension: Andersen and Sidenus
- Composite Basket Model
- Gaussian Mixture
Mixture of Copula Functions

- Basic Idea: Correlation is small in good times and large in bad times
- One solution is to make correlation random
- Using copula function we know that the mixture of copula function is still a copula function

\[C(U) = \int C(u \mid \rho) d\nu (\rho) \]
Mixture Copula Function: Discrete Case

\[
\sum_{j=1}^{m} \alpha_j \cdot C_j \left(u_1, u_2, \ldots, u_m ; \rho_j \right) \\
\sum_{j=1}^{m} \alpha_j = 1 ,
\]
Gaussian Mixture

- We have three Gaussian copula functions and each with one constant correlation parameter rho
- We also have two independent mixing parameters alpha1 and alpha 2. \(\alpha_3 = 1 - \alpha_1 - \alpha_2 \)
- We can use this approach to calibrate to the index market with 5 frequently traded tranches
- The calibration is relatively stable. We obtain three correlation parameters around 0%, 25% and 90% and the mixing parameters around 60%, 20% and 20%.
Implied Loss Distribution

An equity tranche with tranche size K can be valued as follows:

$$
E \left(L_T (K) \right) = \int_0^K S_{L_P} (x) \, dx
$$

$$
\frac{\partial E \left(L_T (K) \right)}{\partial K} = S_{L_P} (K) = \Pr \left[L_P > K \right]
$$

$$
\frac{\partial^2 E \left(L_T (K) \right)}{\partial K^2} = -f_{L_P} (K)
$$

Using market index tranche spreads and base correlation we can obtain the implied loss distribution of CDS index portfolio.
Loss Distribution Comparisons

CDX Loss Distribution: Implied, GM, and 15% Flat Gaussian

- Market
- Gaussian Mixture
- Flat 15%

Prob (L > K) vs. strike
Comparison of Leverage Ratios

Comparision of CDX Leverage Ratio

Leverage Ratio

Tranches

Gaussian Mixture
Gaussian
Pricing CDO^2-Type Transactions

- Calculate implied loss distribution
- Obtain model implied loss distribution
- Create a mapping between the market implied loss distribution and model implied loss distribution
- Using this mapping to price all CDOs and CDO^2
- Create a balance between matching to market and also using an economic plausible model
Term Structure of Base Correlation

<table>
<thead>
<tr>
<th>Strike</th>
<th>20-Dec-08</th>
<th>20-Dec-10</th>
<th>20-Dec-12</th>
<th>20-Dec-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0%</td>
<td>11.82%</td>
<td>8.94%</td>
<td>6.00%</td>
<td>2.72%</td>
</tr>
<tr>
<td>6.0%</td>
<td>18.95%</td>
<td>18.16%</td>
<td>18.75%</td>
<td>5.81%</td>
</tr>
<tr>
<td>9.0%</td>
<td>22.93%</td>
<td>23.81%</td>
<td>28.73%</td>
<td>13.68%</td>
</tr>
<tr>
<td>12.0%</td>
<td>24.72%</td>
<td>28.71%</td>
<td>36.47%</td>
<td>19.19%</td>
</tr>
<tr>
<td>22.0%</td>
<td>35.96%</td>
<td>40.19%</td>
<td>57.34%</td>
<td>34.43%</td>
</tr>
</tbody>
</table>
Loss-Grid Approach

Strike Direction

Time Direction
Dynamic Models Based on Portfolio Loss

- To model total portfolio loss only
- Using either short rate type model for instantaneous loss ratio or forward rate model for forward loss ratio
- Functional form, senior tranche, calibration issues
- Sensitivities, going from index to bespoke

- Ultimate Model: replication Model?
Disclaimer

This presentation has been prepared by Barclays Capital - the investment banking division of Barclays Bank PLC and its affiliates worldwide (‘Barclays Capital’). This publication is provided to you for information purposes, any pricing in this report is indicative and is not intended as an offer or solicitation for the purchase or sale of any financial instrument. The information contained herein has been obtained from sources believed to be reliable but Barclays Capital does not represent or warrant that it is accurate and complete. The views reflected herein are those of Barclays Capital and are subject to change without notice. Barclays Capital and its respective officers, directors, partners and employees, including persons involved in the preparation or issuance of this document, may from time to time act as manager, co-manager or underwriter of a public offering or otherwise deal in, hold or act as market-makers or advisors, brokers or commercial and/or investment bankers in relation to the securities or related derivatives which are the subject of this report.

Neither Barclays Capital, nor any officer or employee thereof accepts any liability whatsoever for any direct or consequential loss arising from any use of this publication or its contents. Any securities recommendations made herein may not be suitable for all investors. Past performance is no guarantee of future returns. Any modeling or backtesting data contained in this document is not intended to be a statement as to future performance.

Investors should seek their own advice as to the suitability of any investments described herein for their own financial or tax circumstances.

This communication is being made available in the UK and Europe to persons who are investment professionals as that term is defined in Article 19 of the Financial Services and Markets Act 2000 (Financial Promotion Order) 2001. It is directed at persons who have professional experience in matters relating to investments. The investments to which it relates are available only to such persons and will be entered into only with such persons.

Barclays Capital - the investment banking division of Barclays Bank PLC, authorised and regulated by the Financial Services Authority (‘FSA’) and member of the London Stock Exchange.

Copyright in this report is owned by Barclays Capital (© Barclays Bank PLC, 2004) - no part of this report may be reproduced in any manner without the prior written permission of Barclays Capital. Barclays Bank PLC is registered in England No. 1026167. Registered office 54 Lombard Street, London EC3P 3AH.